2023年成考高起点每日一练《数学(理)》10月20日专为备考2023年数学(理)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。
单选题
1、若tanα=3,则
- A:-2
- B:
- C:2
- D:-4
答 案:A
解 析:
2、给出下列两个命题:①如果一条直线与一个平面垂直,则该直线与该平面内的任意一条直线垂直②以二面角的棱上任意一点为端点,在二面角的两个面内分别作射线,则这两条射线所成的角为该二面角的平面角.则()
- A:①②都为真命题
- B:①为真命题,②为假命题
- C:①为假命题,②为真命题
- D:①②都为假命题
答 案:B
解 析:一条直线与平面垂直,则直线与平面内的任意一条直线垂直,故①为真命题;二面角的两条射线必须垂直于二面角的棱,故②为假命题,因此选B选项.
3、从椭圆与x轴额右交点看短轴两端点的视角为60°的椭圆的离心率()
- A:
- B:
- C:1
- D:
答 案:A
解 析:求椭圆的离心率,先求出a,c.(如图) ,由椭圆定义知
4、中心在坐标原点,对称轴为坐标轴,且一个顶点(3,0),虚轴长为8的双曲线方程是()
- A:
- B:
- C:
- D:
答 案:B
解 析:双曲线有一个顶点为(3,0),因此所求双曲线的实轴在x轴上,可排除A、C选项,又由于虚轴长为8,故b=4,即b2=16,故双曲线方程为
主观题
1、为了测河的宽,在岸边选定两点A和B,望对岸标记物C,测得AB=120m,求河的宽
答 案:如图,
∵∠C=180°-30°-75°=75°
∴△ABC为等腰三角形,则AC=AB=120m
过C做CD⊥AB,则由Rt△ACD可求得CD=
=60m,
即河宽为60m
2、某工厂每月生产x台游戏机的收入为R(x)=+130x-206(百元),成本函数为C(x)=50x+100(百元),当每月生产多少台时,获利润最大?最大利润为多少?
答 案:利润 =收入-成本, L(x)=R(x)-C(x)=+130x-206-(50x+100)=
+80x-306
法一:用二次函数
当a<0时有最大值
是开口向下的抛物线,有最大值
法二:用导数来求解
因为x=90是函数在定义域内唯一驻点
所以x=90是函数的极大值点,也是函数的最大值点,其最大值为L(90)=3294
3、已知数列的前n项和
求证:
是等差数列,并求公差和首项。
答 案:
4、在正四棱柱ABCD-A'B'C'D'中,
(Ⅰ)写出向量
和
关于基底{a,b,c}的分解式;
(Ⅱ)求证:
(Ⅲ)求证:
答 案:(Ⅰ)由题意知(如图所示)
填空题
1、若平面向量a=(x,1),b=(1,-2),且a//b,则x=()
答 案:
解 析:由于a//b,故
2、的展开式是()
答 案:
解 析:
精彩评论