2023年成考高起点每日一练《数学(理)》10月14日专为备考2023年数学(理)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。
单选题
1、设A、B、C是三个随机事件,用A、B、C的运算关系()表示事件:B、C都发生,而A不发生
- A:
- B:
- C:
- D:
答 案:B
解 析:选项A,表示A或B发生或C不发生,选项C,表示A不发生或B、C不发生.选项D,表示A发生且 B、C 不发生.
2、已知向量a=(3,4),向量 b=(0,-2),则cos的值为()
- A:
- B:
- C:
- D:
答 案:B
解 析:求cos可直接用公式cos a·b=(3,4)·(0,-2)=3×0+4×(-2)=8,
3、已知空间向量i,j,k为两两垂直的单位向量,向量a=2i+3j+mk,若,则m=()
- A:-2
- B:-1
- C:0
- D:1
答 案:C
解 析:由题可知向量a=(2,3,m),故,解得m=0.
4、展开式中,末3项的系数(a,x 均未知) 之和为()
- A:22
- B:12
- C:10
- D:-10
答 案:C
解 析:末三项数之和为
主观题
1、为了测河的宽,在岸边选定两点A和B,望对岸标记物C,测得AB=120m,求河的宽
答 案:如图,
∵∠C=180°-30°-75°=75°
∴△ABC为等腰三角形,则AC=AB=120m
过C做CD⊥AB,则由Rt△ACD可求得CD=
=60m,
即河宽为60m
2、在正四棱柱ABCD-A'B'C'D'中,
(Ⅰ)写出向量
和
关于基底{a,b,c}的分解式;
(Ⅱ)求证:
(Ⅲ)求证:
答 案:(Ⅰ)由题意知(如图所示)
3、已知等差数列前n项和
(Ⅰ)求这个数列的通项公式;(Ⅱ)求数列第六项到第十项的和
答 案:
4、某工厂每月生产x台游戏机的收入为R(x)=+130x-206(百元),成本函数为C(x)=50x+100(百元),当每月生产多少台时,获利润最大?最大利润为多少?
答 案:利润 =收入-成本, L(x)=R(x)-C(x)=+130x-206-(50x+100)=
+80x-306
法一:用二次函数
当a<0时有最大值
是开口向下的抛物线,有最大值
法二:用导数来求解
因为x=90是函数在定义域内唯一驻点
所以x=90是函数的极大值点,也是函数的最大值点,其最大值为L(90)=3294
填空题
1、函数的图像与坐标轴的交点共有()
答 案:2
解 析:当x=0时,y=-2=-1,故函数与y轴交于(0,-1)点,令y=0,则有
故函数与x轴交于(1,0) 点,因此函数
与坐标轴的交点共有 2个.
2、若平面向量a=(x,1),b=(1,-2),且a//b,则x=()
答 案:
解 析:由于a//b,故
精彩评论