2023年成考高起点每日一练《数学(理)》9月25日专为备考2023年数学(理)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。
单选题
1、已知全集U=R,A={x|x≥1},B={x|-1
- A:{x|x≤2}
- B:{x|x<2}
- C:{x|-1
- D:{x|-1
- D:{x|-1
答 案:A
解 析:补集运算应明确知道是否包括端点.A在U中的补集是x<1,
2、已知直线l:3x-2y-5=0,圆C:,则C上到l的距离为1的点共有()
- A:1个
- B:2个
- C:3个
- D:4个
答 案:D
解 析:由题可知圆的圆心为(1,-1),半径为2 ,圆心到直线的距离为,即直线过圆心,因此圆C上到直线的距离为1的点共有4个.
3、设甲:;乙:
.则()
- A:甲是乙的必要条件但不是充分条件
- B:甲是乙的充分条件但不是必要条件
- C:甲是乙的充要条件
- D:甲既不是乙的充分条件也不是乙的必要条件
答 案:A
解 析:三角形相似不一定全等,但三角形全等一定相似,因此,甲是乙的必要条件但不是充分条件.
4、已知α∩β=a,b⊥β,b在α内的射影是b’,那么b'和α的关系是()
- A:b'//α
- B:b'⊥α
- C:b'与α是异面直线
- D:b'与α相交成锐角
答 案:B
解 析: ∴由三垂线定理的逆定理知,b在α内的射影b'⊥α,故选B
主观题
1、在正四棱柱ABCD-A'B'C'D'中,
(Ⅰ)写出向量
关于基底{a,b,c}的分解式
(Ⅱ)求证:
(Ⅲ)求证:
答 案:(Ⅰ)由题意知(如图所示)
(Ⅱ)
(Ⅲ)
由已知,a,c是正四棱柱的棱,a,b,c两两垂直
2、某工厂每月生产x台游戏机的收入为R(x)=+130x-206(百元),成本函数为C(x)=50x+100(百元),当每月生产多少台时,获利润最大?最大利润为多少?
答 案:利润 =收入-成本, L(x)=R(x)-C(x)=+130x-206-(50x+100)=
+80x-306
法一:用二次函数
当a<0时有最大值
是开口向下的抛物线,有最大值
法二:用导数来求解
因为x=90是函数在定义域内唯一驻点
所以x=90是函数的极大值点,也是函数的最大值点,其最大值为L(90)=3294
3、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.(I)求l与C的准线的交点坐标;
(II)求|AB|.
答 案:(I)C的焦点为,准线为
由题意得l的方程为
因此l与C的准线的交点坐标为
(II)由
,得
设A(x1,y1),B(x2,y2),则
因此
4、已知数列的前n项和
求证:
是等差数列,并求公差和首项。
答 案:
填空题
1、不等式的解集为()
答 案:
解 析:
2、的展开式是()
答 案:
解 析:
精彩评论