2023年成考高起点每日一练《数学(理)》9月14日专为备考2023年数学(理)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。
单选题
1、若tanα=3,则
- A:-2
- B:
- C:2
- D:-4
答 案:A
解 析:
2、袋中有6个球,其中4个红球,2个白球,从中随机取出2个球,则其中恰有1个红球的概率为()
- A:
- B:
- C:
- D:
答 案:A
解 析:
3、若甲:x>1,乙:则
- A:甲是乙的必要条件,但不是乙的充分条件
- B:甲是乙的充分必要条件
- C:甲不是乙的充分条件,也不是乙的必要条件
- D:甲是乙的充分条件,但不是乙的必要条件
答 案:D
解 析:而
故甲是乙的充分条件,但不是必要条件
4、过点(-2,2)与直线x+3y-5=0平行的直线是()
- A:x+3y-4=0
- B:3x+y+4=0
- C:x+3y+8=0
- D:3x-y+8=0
答 案:A
解 析:所求直线与x+3y-5=0平行,可设所求直线为x+3y+c=0,将点(一2,2)带入直线方程,故-2+3×2+c=0,解得c=-4,因此所求直线为线为x+3y-4=0.
主观题
1、已知a,b,c成等差数列,a,b,c+1成等比数列.若b=6,求a和c.
答 案:由已知得解得
2、已知数列的前n项和
求证:
是等差数列,并求公差和首项。
答 案:
3、已知等差数列前n项和
(Ⅰ)求这个数列的通项公式;(Ⅱ)求数列第六项到第十项的和
答 案:
4、建筑一个容积为8000,深为6m的长方体蓄水池,池壁每
的造价为15元,池底每
的造价为30元。(I)把总造价y(元)表示为长x(m)的函数;(Ⅱ)求函数的定义域
答 案:
填空题
1、函数的图像与坐标轴的交点共有()
答 案:2
解 析:当x=0时,y=-2=-1,故函数与y轴交于(0,-1)点,令y=0,则有
故函数与x轴交于(1,0) 点,因此函数
与坐标轴的交点共有 2个.
2、若平面向量a=(x,1),b=(1,-2),且a//b,则x=()
答 案:
解 析:由于a//b,故
精彩评论