2023年成考高起点每日一练《数学(理)》9月12日专为备考2023年数学(理)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。
单选题
1、从椭圆与x轴额右交点看短轴两端点的视角为60°的椭圆的离心率()
- A:
- B:
- C:1
- D:
答 案:A
解 析:求椭圆的离心率,先求出a,c.(如图) ,由椭圆定义知
2、设A、B、C是三个随机事件,用A、B、C的运算关系()表示事件:B、C都发生,而A不发生
- A:
- B:
- C:
- D:
答 案:B
解 析:选项A,表示A或B发生或C不发生,选项C,表示A不发生或B、C不发生.选项D,表示A发生且 B、C 不发生.
3、过点P(2,3)且在两轴上截距相等的直线方程为()
- A:
- B:
- C:x+y=5
- D:
答 案:B
解 析:选项A中,在x、y 轴上截距为 5.但答案不完整 所以选项B中有两个方程,
在x轴上横截距与y轴上的纵截距都为0,也是相等的
选项C,虽然过点(2,3),实质上与选项A相同.选项 D,转化为:
答案不完整
4、在△ABC中,若b=,c=
则a等于()
- A:2
- B:
- C:
- D:无解
答 案:B
解 析:此题是已知两边和其中一边的对角,解三角形时,会出现一解、两解、无解的情况,要注意这一点.用余弦定理可得
解出
主观题
1、在正四棱柱ABCD-A'B'C'D'中,
(Ⅰ)写出向量
关于基底{a,b,c}的分解式
(Ⅱ)求证:
(Ⅲ)求证:
答 案:(Ⅰ)由题意知(如图所示)
(Ⅱ)
(Ⅲ)
由已知,a,c是正四棱柱的棱,a,b,c两两垂直
2、设函数f(x)=
(Ⅰ)求f(x)的单调区间;
(Ⅱ)求 f(x)的极值
答 案:(Ⅰ)函数的定义域为
(Ⅱ)
3、设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;
(II)求f(x)的极值.
答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲线y=f(x)在点(1,f(1))处的切线方程为y=2x-1.(II)令f'(x)=0,解得当
时,f'(x)
单调递减,在区间
单调递增.因此f(x)在
时取得极小值
4、已知a,b,c成等差数列,a,b,c+1成等比数列.若b=6,求a和c.
答 案:由已知得解得
填空题
1、设离散型随机变量的分布列如下表,那么
的期望等于()
答 案:5.48
解 析:=6×0.7+5.4×0.1+5×0.1+4×0.06+0×0.04=5.48
2、函数的定义域是()
答 案:
解 析:所以函数
的定义域是
精彩评论