2023年成考高起点每日一练《数学(理)》9月11日专为备考2023年数学(理)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。
单选题
1、某类灯泡使用时数在1000小时以上的概率为0.2,三个灯泡在使用1000小时以后最多只有一个坏的概率为()
- A:0.008
- B:0.104
- C:0.096
- D:1
答 案:B
解 析:已知灯泡使用1000小时后好的概率为0.2,坏的概率为1-0.2=0.8,则三个灯泡使用1000小时以后,可分别求得: P(没有坏的)
P(一个坏的)
故最多只有一个坏的概率为:0.008+0.096=0.104.
2、设双曲线的渐近线的斜率为k,则|k|=()
- A:
- B:
- C:
- D:
答 案:D
解 析:双曲线渐近线的斜率为k故本题中k
3、过点(-2,2)与直线x+3y-5=0平行的直线是()
- A:x+3y-4=0
- B:3x+y+4=0
- C:x+3y+8=0
- D:3x-y+8=0
答 案:A
解 析:所求直线与x+3y-5=0平行,可设所求直线为x+3y+c=0,将点(一2,2)带入直线方程,故-2+3×2+c=0,解得c=-4,因此所求直线为线为x+3y-4=0.
4、已知偶函数y=f(x),在区间[a,b](0 答 案:B 解 析:由偶函数的性质:偶函数在[a,b]和[-b,-a]上有相反的单调性,可知,y=f(x)在区间[a,b](0f(-a),所以f(x)在[-b,-a]上是减函数。 主观题 1、已知等差数列前n项和 答 案: 2、某工厂每月生产x台游戏机的收入为R(x)= 答 案:利润 =收入-成本, L(x)=R(x)-C(x)= 3、在正四棱柱ABCD-A'B'C'D'中, 答 案:(Ⅰ)由题意知(如图所示) 4、设函数f(x)= 答 案:(Ⅰ)函数的定义域为 填空题 1、若平面向量a=(x,1),b=(1,-2),且a//b,则x=()
答 案: 解 析:由于a//b,故 2、椭圆的中心在原点,一个顶点和一个焦点分别是直线x+3y-6与两坐标轴的交点,则此椭圆的标准方程为()
答 案: 解 析:原直线方程可化为
(Ⅰ)求这个数列的通项公式;(Ⅱ)求数列第六项到第十项的和
+130x-206(百元),成本函数为C(x)=50x+100(百元),当每月生产多少台时,获利润最大?最大利润为多少?
+130x-206-(50x+100)=
+80x-306
法一:用二次函数
当a<0时有最大值
是开口向下的抛物线,有最大值
法二:用导数来求解
因为x=90是函数在定义域内唯一驻点
所以x=90是函数的极大值点,也是函数的最大值点,其最大值为L(90)=3294
(Ⅰ)写出向量
和
关于基底{a,b,c}的分解式;
(Ⅱ)求证:
(Ⅲ)求证:
(Ⅰ)求f(x)的单调区间;
(Ⅱ)求 f(x)的极值
(Ⅱ)
交点(6,0),(0,2). 当点(6,0)是椭圆一个焦点,点(0,2) 是椭圆一个顶点时,c=6,b=2,
当点(0,2) 是椭圆一个焦点,(6,0) 是椭圆一个顶点时,c=2,b-6,
精彩评论