答 案:D
解 析:
3、设双曲线
的渐近线的斜率为k,则|k|=()
答 案:D
解 析:双曲线渐近线的斜率为k
故本题中k
4、若tanα=3,则
- A:-2
- B:

- C:2
- D:-4
答 案:A
解 析:
主观题
1、某工厂每月生产x台游戏机的收入为R(x)=
+130x-206(百元),成本函数为C(x)=50x+100(百元),当每月生产多少台时,获利润最大?最大利润为多少?
答 案:利润 =收入-成本, L(x)=R(x)-C(x)=
+130x-206-(50x+100)=
+80x-306
法一:用二次函数
当a<0时有最大值
是开口向下的抛物线,有最大值
法二:用导数来求解
因为x=90是函数在定义域内唯一驻点
所以x=90是函数的极大值点,也是函数的最大值点,其最大值为L(90)=3294
2、已知等差数列前n项和
(Ⅰ)求这个数列的通项公式;(Ⅱ)求数列第六项到第十项的和
答 案:
3、设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;
(II)求f(x)的极值.
答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲线y=f(x)在点(1,f(1))处的切线方程为y=2x-1.(II)令f'(x)=0,解得
当
时,f'(x)时,f'(x)>O.故f(x)在区间
单调递减,在区间
单调递增.因此f(x)在
时取得极小值
4、在正四棱柱ABCD-A'B'C'D'中,
(Ⅰ)写出向量
和
关于基底{a,b,c}的分解式;
(Ⅱ)求证:
(Ⅲ)求证:
答 案:(Ⅰ)由题意知(如图所示)
填空题
1、函数
的定义域是()
答 案:
解 析:
所以函数
的定义域是
2、lg(tan43°tan45°tan47°)=()
答 案:0
解 析:lg(tan43°tan45°tan47°)=lg(tan43°tan45°cot43°)=lgtan45°=lg1=0
精彩评论