131职教网:包含各种考证等职教知识

网站首页

您的位置:首页 学历类成考高起点 → 2023年08月24日成考高起点每日一练《数学(文史)》

2023年08月24日成考高起点每日一练《数学(文史)》

2023/08/24 作者:匿名 来源:本站整理

2023年成考高起点每日一练《数学(文史)》8月24日专为备考2023年数学(文史)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。

单选题

1、函数f(x)=当x∈[-2,+∞)时是增函数,当x∈(-∞,-2]时是减函数,则f(1)=()  

  • A:-3
  • B:13
  • C:7
  • D:由m而定的常数

答 案:B

解 析:由题意知抛物线的对称轴为x=-2,  

2、在△ABC中,三边为a、b、c,∠B=60°,则的值是()  

  • A:大于零
  • B:小于零
  • C:等于零
  • D:不能确定

答 案:C

解 析:由已知用余弦定理得:  

3、点P(-5,12)到y轴的距离()  

  • A:12
  • B:7
  • C:-5
  • D:5

答 案:D

解 析:由点P的坐标(-5,12)知,点P到y轴的距离为|x|=5

4、b=0是直线y=kx+b过原点的()

  • A:充分但不必要条件
  • B:必要但不充分条件
  • C:充要条件
  • D:既不充分也不必要条件

答 案:C

解 析:b=0直线y=kx+b过原点

主观题

1、在△ABC中,已知三边 a、b、c 成等差数列,且最大角∠A是最小角的2倍, a: b :c.  

答 案:

2、如图:已知在△ADC中,∠C=90°,∠D=30°,∠ABC=45°,BD=20,求AC(用小数表示,保留一位小数)  

答 案:如图  

3、设函数
(I)求f'(2);
(II)求f(x)在区间[一1,2]的最大值与最小值.

答 案:(I)因为,所以f'(2)=3×22-4=8.(II)因为x<-1,f(-1)=3.f(2)=0.
所以f(x)在区间[一1,2]的最大值为3,最小值为

4、设函数f(x)且f'(-1)=-36 (Ⅰ)求m (Ⅱ)求f(x)的单调区间

答 案:(Ⅰ)由已知得f'= 又由f'(-1)=-36得 6-6m-36=-36 故m=1. (Ⅱ)由(Ⅰ)得f'(x)= 令f'(x)=0,解得 当x<-3时,f'(x)>0; 当-32时,f'(x)>0; 故f(x)的单调递减区间为(-3,2),f(x)的单调递增区间为(-∞,-3),(2,+∞)  

填空题

1、函数的图像与坐轴的交点共有()个  

答 案:2

解 析:当x=0,故函数与y轴交于(0,-1)点;令y=0,则有故函数与工轴交于(1,0)点,因此函数与坐标轴的交点共有2个

2、已知向量a=(3,2),b=(-4,x),且a⊥b,则x=()  

答 案:6

解 析:∵a⊥b, ∴3×(-4)+2x=0 ∴x=6.  

网友评论

0
发表评论

您的评论需要经过审核才能显示

精彩评论

最新评论